并发编程的优缺点

并发编程的优缺点

Java并发编程是整个Java开发体系中最难以理解,但也是最重要的知识点之一,因此学习起来比较费劲,从而导致很多人望而却步,但是无论是职场面试还是高并发高流量的系统的实现都离不开并发编程,能够真正掌握并发编程的人才在市场上供不应求。

为什么要使用并发编程(优点)

充分利用多核CPU的计算能力

摩尔定律:当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。换言之,每一美元所能买到的电脑性能,将每隔18-24个月翻一倍以上。这一定律揭示了信息技术进步的速度。

一直以来,硬件的发展极其迅速,也有一个很著名的"摩尔定律",你可能会奇怪明明讨论的是并发编程为什么会扯到了硬件的发展,这其中的关系应该是多核CPU的发展为并发编程提供的硬件基础。摩尔定律并不是一种自然法则或者是物理定律,它只是基于观测数据,对未来的一种预测。按照所预测的速度,我们的计算能力会按照指数级别的速度增长,不久以后会拥有超强的计算能力,正是在畅想未来的时候,2004年,Intel宣布4GHz芯片的计划推迟到2005年,然后在2004年秋季,Intel宣布彻底取消4GHz的计划,也就是说摩尔定律的有效性超过了半个世纪戛然而止。但是,聪明的硬件工程师并没有停止研发的脚步,他们为了进一步提升计算速度,不是再追求单独的计算单元,而是将多个计算单元整合到了一起,也就是形成了多核CPU。短短十几年的时间,家用型CPU,比如Intel i7就可以达到4核心甚至8核心。而专业服务器则通常可以达到几个独立的CPU,每一个CPU甚至拥有多达8个以上的内核。因此,摩尔定律似乎在CPU核心扩展上继续得到体验。因此,多核的CPU的背景下,催生了并发编程的趋势,通过并发编程的形式可以将多核CPU的计算能力发挥到极致,性能得到提升

顶级计算机科学家Donald Ervin Knuth如此评价这种情况:在我看来,这种现象(并发)或多或少是由于硬件设计者无计可施导致的,他们将摩尔定律的责任推给了软件开发者。

方便进行业务拆分,提升系统并发能力和性能

在特殊的业务场景下先天的就适合于并发编程。现在的系统动不动就要求百万级甚至千万级的并发量,而多线程并发编程正是开发高并发系统的基础,利用好多线程机制可以大大提高系统整体的并发能力以及性能。比如在图像处理领域,一张1024X768像素的图片,包含78万6千多个像素。将所有的像素遍历一边都需要很长的时间,面对如此复杂的计算量就需要充分利用多核CPU的计算能力。又比如当我们在网上购物时,为了提升响应速度,减库存、生成订单等等这些操作就可以进行拆分,利用多线程的技术完成。面对复杂业务模型,并行程序会比串行程序更适应业务需求,而并发编程更能吻合这种业务拆分

并发编程的缺点

并发编程的目的就是为了能提高程序的执行效率,提高程序运行速度,但是并发编程并不总是能提高程序运行速度的,而且并发编程可能会遇到很多问题,比如:内存泄漏、上下文切换、线程安全、死锁等问题。

频繁的上下文切换

任务从保存到再加载就是一次上下文切换。

时间片是CPU分配给各个线程的时间,因为时间非常短,所以CPU不断通过切换线程,让我们觉得多个线程是同时执行的,时间片一般是几十毫秒。而每次切换时,需要保存当前的状态,以便能够进行恢复先前的状态,而这个切换时非常损耗性能,过于频繁反而无法发挥出多线程编程的优势。

减少上下文切换的解决方案

  • 无锁并发编程:可以参照concurrentHashMap锁分段的思想,不同的线程处理不同段的数据,这样在多线程竞争的条件下,可以减少上下文切换的时间。
  • CAS算法:利用Atomic下使用CAS算法来更新数据,使用了乐观锁,可以有效的减少一部分不必要的锁竞争带来的上下文切换。
  • 使用最少线程:避免创建不需要的线程,比如任务很少,但是创建了很多的线程,这样会造成大量的线程都处于等待状态。
  • 协程:在单线程里实现多任务的调度,并在单线程里维持多个任务间的切换。

由于上下文切换也是个相对比较耗时的操作,所以在"java并发编程的艺术"一书中有过一个实验,并发累加未必会比串行累加速度要快。 可以使用Lmbench3测量上下文切换的时长 vmstat测量上下文切换次数

线程安全

多线程编程中最难以把握的就是临界区线程安全问题,稍微不注意就会出现死锁的情况,一旦产生死锁就会造成系统功能不可用。

public class DeadLockDemo {
    private static String resource_a = "A";
    private static String resource_b = "B";

    public static void main(String[] args) {
        deadLock();
    }

    public static void deadLock() {
        Thread threadA = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (resource_a) {
                    System.out.println("get resource a");
                    try {
                        Thread.sleep(3000);
                        synchronized (resource_b) {
                            System.out.println("get resource b");
                        }
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        });
        Thread threadB = new Thread(new Runnable() {
            @Override
            public void run() {
                synchronized (resource_b) {
                    System.out.println("get resource b");
                    synchronized (resource_a) {
                        System.out.println("get resource a");
                    }
                }
            }
        });
        threadA.start();
        threadB.start();

    }
}

在上面的这个demo中,开启了两个线程threadA, threadB,其中threadA占用了resource_a, 并等待被threadB占用的resource _b。threadB占用了resource _b正在等待被threadA占用的resource _a。因此threadA,threadB出现线程安全的问题,形成死锁。同样可以通过jps,jstack证明这种推论:

"Thread-1":
  waiting to lock monitor 0x000000000b695360 (object 0x00000007d5ff53a8, a java.lang.String),
  which is held by "Thread-0"
"Thread-0":
  waiting to lock monitor 0x000000000b697c10 (object 0x00000007d5ff53d8, a java.lang.String),
  which is held by "Thread-1"

Java stack information for the threads listed above:
===================================================
"Thread-1":
        at learn.DeadLockDemo$2.run(DeadLockDemo.java:34)
        - waiting to lock <0x00000007d5ff53a8(a java.lang.String)
        - locked <0x00000007d5ff53d8(a java.lang.String)
        at java.lang.Thread.run(Thread.java:722)
"Thread-0":
        at learn.DeadLockDemo$1.run(DeadLockDemo.java:20)
        - waiting to lock <0x00000007d5ff53d8(a java.lang.String)
        - locked <0x00000007d5ff53a8(a java.lang.String)
        at java.lang.Thread.run(Thread.java:722)

Found 1 deadlock.

如上所述,完全可以看出当前死锁的情况。

那么,通常可以用如下方式避免死锁的情况:

  1. 避免一个线程同时获得多个锁;
  2. 避免一个线程在锁内部占有多个资源,尽量保证每个锁只占用一个资源;
  3. 尝试使用定时锁,使用lock.tryLock(timeOut),当超时等待时当前线程不会阻塞;
  4. 对于数据库锁,加锁和解锁必须在一个数据库连接里,否则会出现解锁失败的情况。

所以,如何正确的使用多线程编程技术有很大的学问,比如如何保证线程安全,如何正确理解由于JVM内存模型在原子性,有序性,可见性带来的问题,比如数据脏读,DCL等问题。而在学习多线程编程技术的过程中也会让你收获颇丰。

易混淆的概念

阻塞与非阻塞

阻塞与非阻塞的重点在于进/线程等待消息时候的行为,也就是在等待消息的时候,当前进/线程是挂起状态,还是非挂起状态。

阻塞:调用在发出去后,在消息返回之前,当前进/线程会被挂起,直到有消息返回,当前进/线程才会被激活;

非阻塞:调用在发出去后,不会阻塞当前进/线程,而会立即返回。

同步与异步

同步:当一个同步调用发出去后,调用者要一直等待调用结果的返回后,才能进行后续的操作。

异步:当一个异步调用发出去后,调用者不用管被调用方法是否完成,都会继续执行后面的代码。 异步调用,要想获得结果,一般有两种方式:

  • 主动轮询异步调用的结果;
  • 被调用方通过callback来通知调用方调用结果;

比如,在超市购物,如果一件物品没了,你得等仓库人员跟你调货,直到仓库人员跟你把货物送过来,你才能继续去收银台付款,这就类似同步调用。而异步调用了,就像网购,你在网上付款下单后,什么事就不用管了,该干嘛就干嘛去了,当货物到达后你收到通知去取就好。

临界区

临界区用来表示一种公共资源或者说是共享数据,可以被多个线程使用。但是每个线程使用时,一旦临界区资源被一个线程占有,那么其他线程必须等待。

并发与并行

  • 并发: 同一时间段,多个任务交替执行 (单位时间内不一定同时执行);
  • 并行:单位时间内,多个任务同时执行。真正意义上的“同时进行”,真正的并行只能出现在拥有多个CPU的系统中;
  • 串行:线程串行的情况下,有n个任务或者你可以理解n个方法,由一个线程顺序执行。由于任务、方法都在一个线程执行所以不存在线程不安全情况,也就不存在临界区的问题。

上下文切换

多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。

概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换

上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的 CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。

Linux 相比与其他操作系统(包括其他类 Unix 系统)有很多的优点,其中有一项就是,其上下文切换和模式切换的时间消耗非常少。

  • 61
    点赞
  • 88
    收藏
    觉得还不错? 一键收藏
  • 12
    评论
第1节你真的了解并发吗? [免费观看][免费观看] 00:27:48分钟 | 第2节理解多线程并发的之间的联系与区别 [免费观看] 00:11:59分钟 | 第3节解析多线程与多进程的联系以及上下文切换所导致资源浪费问题 [免费观看] 00:13:03分钟 | 第4节学习并发的四个阶段并推荐学习并发的资料 [免费观看] 00:09:13分钟 | 第5节线程的状态以及各状态之间的转换详解00:21:56分钟 | 第6节线程的初始化,中断以及其源码讲解00:21:26分钟 | 第7节多种创建线程的方式案例演示(一)带返回值的方式00:17:12分钟 | 第8节多种创建线程的方式案例演示(二)使用线程池00:15:40分钟 | 第9节Spring对并发的支持:Spring的异步任务00:11:10分钟 | 第10节使用jdk8提供的lambda进行并行计算00:14:22分钟 | 第11节了解多线程所带来的安全风险00:13:16分钟 | 第12节从线程的优先级看饥饿问题00:18:42分钟 | 第13节从Java字节码的角度看线程安全性问题00:25:43分钟 | 第14节sy nchronized保证线程安全的原理(理论层面)00:13:59分钟 | 第15节synchronized保证线程安全的原理(jvm层面)00:25:03分钟 | 第16节单例问题与线程安全性深入解析00:27:15分钟 | 第17节理解自旋锁,死锁与重入锁00:24:58分钟 | 第18节深入理解volatile原理与使用00:28:30分钟 | 第19节JDK5提供的原子类的操作以及实现原理00:27:10分钟 | 第20节Lock接口认识与使用00:19:54分钟 | 第21节手动实现一个可重入锁00:26:31分钟 | 第22节AbstractQueuedSynchronizer(AQS)详解00:49:04分钟 | 第23节使用AQS重写自己的锁00:31:04分钟 | 第24节重入锁原理与演示00:12:24分钟 | 第25节读写锁认识与原理00:18:04分钟 | 第26节细读ReentrantReadWriteLock源码00:30:38分钟 | 第27节ReentrantReadWriteLock锁降级详解00:13:32分钟 | 第28节线程安全性问题简单总结00:15:34分钟 | 第29节线程之间的通信之wait/notify00:32:12分钟 | 第30节通过生产者消费者模型理解等待唤醒机制00:20:50分钟 | 第31节Condition的使用及原理解析00:17:40分钟 | 第32节使用Condition重写wait/notify案例并实现一个有界队列00:22:05分钟 | 第33节深入解析Condition源码00:21:15分钟 | 第34节实战:简易数据连接池00:24:53分钟 | 第35节线程之间通信之join应用与实现原理剖析00:10:17分钟 | 第36节ThreadLocal 使用及实现原理00:17:41分钟 | 第37节并发工具类CountDownLatch详解00:22:04分钟 | 第38节并发工具类CyclicBarrier 详解00:11:52分钟 | 第39节并发工具类Semaphore详解00:17:27分钟 | 第40节并发工具类Exchanger详解00:13:47分钟 | 第41节CountDownLatch,CyclicBarrier,Semaphore源码解析00:29:57分钟 | 第42节提前完成任务之FutureTask使用00:11:43分钟 | 第43节Future设计模式实现实现类似于JDK提供的Future)00:19:20分钟 | 第44节Future源码解读00:29:22分钟 | 第45节Fork/Join框架详解00:28:09分钟 | 第46节同步容器与并发容器00:18:44分钟 | 第47节并发容器CopyOnWriteArrayList原理与使用00:15:52分钟 | 第48节并发容器ConcurrentLinkedQueue原理与使用00:31:03分钟 | 第49节Java中的阻塞队列原理与使用00:26:18分钟 | 第50节实战:简单实现消息队列00:11:07分钟 | 第51节并发容器ConcurrentHashMap原理与使用00:38:22分钟 | 第52节线程池的原理与使用00:42:49分钟 | 第53节Executor框架详解00:36:54分钟 | 第54节实战:简易web服务器(一)00:55:34分钟 | 第55节实战:简易web服务器(二)00:24:36分钟 | 第56节JDK8的新增原子操作类LongAddr原理与使用00:17:45分钟 | 第57节JDK8新增锁StampedLock详解00:29:37分钟 | 第58节重排序问题00:23:19分钟 | 第59节happens-before简单概述00:15:17分钟 | 第60节锁的内存语义00:13:54分钟 | 第61节volatile内存语义00:12:04分钟 | 第62节final域的内存语义00:34:07分钟 | 第63节实战:问题定位00:07:48分钟 |
Selenium是一个自动化测试工具,可以模拟用户在浏览器上的操作,对web应用进行自动化测试。其优缺点如下: 优点: 1. 跨平台:Selenium支持多种操作系统和浏览器,包括Windows、Linux、Mac等,支持Chrome、Firefox、IE、Safari等主流浏览器。 2. 支持多种编程语言:Selenium支持多种编程语言,包括Java、Python、C#、Ruby等,可以根据自己的喜好和需求进行选择。 3. 支持并发测试:Selenium可以同时运行多个测试用例,提高测试效率。 4. 支持自动化测试:Selenium可以模拟用户在浏览器上的操作,可以进行自动化测试,提高测试效率和准确性。 5. 社区活跃:Selenium是一个开源工具,拥有庞大的用户社区支持和开发者支持,可以获得免费的技术支持和更新。 缺点: 1. 学习成本高:Selenium需要掌握一定的编程知识和技能,需要一定的学习成本。 2. 对浏览器的兼容性要求高:Selenium对浏览器的版本和兼容性要求比较高,需要针对不同的浏览器和版本进行调试和测试。 3. 速度较慢:Selenium模拟用户操作,需要进行页面加载、解析和渲染,速度较慢,特别是在大量数据的情况下。 4. 不支持跨域测试:Selenium只能在同一域名下进行测试,不能跨域测试。 5. 对于一些特殊场景的支持还不够完善:Selenium对于一些特殊场景的支持还不够完善,需要开发者自行解决。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值