本文部分摘自《Java 并发编程的艺术》
CountDownLatch
CountDownLatch 允许一个或多个线程等待其他线程完成操作。假设现有一个需求:我们需要解析一个 Excel 里多个 sheet 的数据,此时可以考虑使用多线程,每个线程解析一个 sheet 的数据,等到所有的 sheet 都解析完之后,程序需要提示解析完成。在这个需求中,要实现主线程等待所有线程完成 sheet 的解析操作,最简单的做法就是使用 join() 方法
public class JoinCountDownLatchTest {
    public static void main(String[] args) throws InterruptedException {
        Thread parser1 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("parser2 finish");
            }
        });
        Thread parser2 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("parser2 finish");
            }
        });
        parser1.start();
        parser2.start();
        parser1.join();
        parser2.join();
        System.out.println("all parser finish");
    }
}
在 JDK5 之后的并发包中提供的 CountDownLatch 也可以实现 join 的功能,并且比 join 的功能更多
public class CountDownLatchTest {
    // CountDown 的构造函数接收一个 int 类型的参数作为计数器
    // 假设想等待 N 个点完成,就传入 N
    static CountDownLatch c = new CountDownLatch(2);
    public static void main(String[] args) throws InterruptedException {
        new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println(1);
                // 每当调用 countDown 方法时,N 就会减一
                c.countDown();
                System.out.println(2);
                c.countDown();
            }
        }).start();
		// await 会阻塞当前线程,直到 N 变成零
        c.await();
        System.out.println(3);
    }
}
CyclicBarrier
CyclicBarrier 可以让一组线程到达一个屏障(同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会放行,所有被屏障拦截的线程才会继续运行
public class CyclicBarrierTest {
    
	// 传入参数为2
    static CyclicBarrier c = new CyclicBarrier(2);
    public static void main(String[] args) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    //调用await方法,计数减一,并阻塞,直到计数为零才放行 
                    c.await();
                } catch (InterruptedException | BrokenBarrierException e) {
                    e.printStackTrace();
                }
                System.out.println(1);
            }
        }).start();
        try {
            c.await();
        } catch (InterruptedException | BrokenBarrierException e) {
            e.printStackTrace();
        }
        System.out.println(2);
    }
}
如果把 new CyclicBarrier(2) 修改为 new CyclicBarrier(3),则主线程和子线程会永远等待,因为没有第三个线程执行 await 方法
CyclicBarrier 还提供一个更高级的构造函数 CyclicBarrier(int parties, Runnable barrierAction),用于在线程到达屏障时,优先执行 barrierAction 方法
public class CyclicBarrierTest2 {
    static CyclicBarrier c = new CyclicBarrier(2, new A());
    public static void main(String[] args) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                try {
                    c.await();
                } catch (Exception e) {
                }
                System.out.println(1);
            }
        }).start();
        try {
            c.await();
        } catch (Exception e) {
        }
        System.out.println(2);
    }
    static class A implements Runnable {
        @Override
        public void run() {
            System.out.println(3);
        }
    }
}
最终输出结果一定先是 3 开头
Semaphore
Semaphore(信号量)用来控制同时访问特定资源的线程数量,它通过协调各个线程,以保证合理的使用公共资源
1. 应用场景
Semaphore 可以用于做流量控制,特别是公用资源有限的应用场景,比如数据库连接
public class SemaphoreTest {
    private static final int THREAD_COUNT = 30;
    private static ExecutorService threadPool = Executors.newFixedThreadPool(THREAD_COUNT);
    private static Semaphore s = new Semaphore(10);
    public static void main(String[] args) {
        for (int i = 0; i < THREAD_COUNT; i++) {
            threadPool.execute(new Runnable() {
                @Override
                public void run() {
                    try {
                        s.acquire();
                        System.out.println("save data");
                        s.release();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            });
        }
        threadPool.shutdown();
    }
}
代码中,虽然有 30 个线程执行,但只允许 10 个线程并发执行。Semaphore 的构造方法 Semaphore(int permits) 接受一个整型的数字,表示可用的许可证数量。Semaphore 的用法也很简单,首先线程使用 Semaphore 的 acquire() 方法获取一个许可证,使用完之后调用 release() 方法归还即可,还可以使用 tryAcquire() 方法尝试获取许可证
Exchanger
Exchanger(交换者)是一个用于线程间协作的工具类,用于线程间的数据交换。它提供一个同步点,在这个同步点,两个线程可以彼此交换数据。这两个线程通过 exchange 方法交换数据,如果第一个线程先执行 exchange 方法,它会一直等待第二个线程执行 exchange 方法,当两个线程都到达同步点时,两个线程就可以交换数据了
假设现在有一个需求:我们需要将纸质银行流水通过人工的方式录入电子银行流水,为了避免错误,采用 AB 岗两人进行录入,录入完成后,系统需加载这两人录入的数据进行比较,看看是否录入一致
public class ExchangerTest {
    private static final Exchanger<String> exchanger = new Exchanger<>();
    private static ExecutorService threadPool = Executors.newFixedThreadPool(2);
    public static void main(String[] args) {
        threadPool.execute(new Runnable() {
            @Override
            public void run() {
                try {
                    // A录入银行流水数据
                    String A = "银行流水A";
                    exchanger.exchange(A);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
        threadPool.execute(new Runnable() {
            @Override
            public void run() {
                try {
                    // B录入银行流水数据
                    String B = "银行流水B";
                    String A = exchanger.exchange(B);
                    System.out.println("A 和 B 数据是否一致:" + A.equals(B) + ", A 录入的是:" + A
                        + ", B 录入的是:" + B);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
        threadPool.shutdown();
    }
}
转载请注明:Java 并发工具类 CountDownLatch、CyclicBarrier、Semaphore、Exchanger | 胖虎的工具箱-编程导航
 
                             
                         
                            